Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 12.922
Filtrar
1.
Sci Rep ; 14(1): 8044, 2024 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580769

RESUMO

The crosstalk between the chromaffin and adrenocortical cells is essential for the endocrine activity of the adrenal glands. This interaction is also likely important for tumorigenesis and progression of adrenocortical cancer and pheochromocytoma. We developed a unique in vitro 3D model of the whole adrenal gland called Adrenoid consisting in adrenocortical carcinoma H295R and pheochromocytoma MTT cell lines. Adrenoids showed a round compact morphology with a growth rate significantly higher compared to MTT-spheroids. Confocal analysis of differential fluorescence staining of H295R and MTT cells demonstrated that H295R organized into small clusters inside Adrenoids dispersed in a core of MTT cells. Transmission electron microscopy confirmed the strict cell-cell interaction occurring between H295R and MTT cells in Adrenoids, which displayed ultrastructural features of more functional cells compared to the single cell type monolayer cultures. Adrenoid maintenance of the dual endocrine activity was demonstrated by the expression not only of cortical and chromaffin markers (steroidogenic factor 1, and chromogranin) but also by protein detection of the main enzymes involved in steroidogenesis (steroidogenic acute regulatory protein, and CYP11B1) and in catecholamine production (tyrosine hydroxylase and phenylethanolamine N-methyltransferase). Mass spectrometry detection of steroid hormones and liquid chromatography measurement of catecholamines confirmed Adrenoid functional activity. In conclusion, Adrenoids represent an innovative in vitro 3D-model that mimics the spatial and functional complexity of the adrenal gland, thus being a useful tool to investigate the crosstalk between the two endocrine components in the pathophysiology of this endocrine organ.


Assuntos
Neoplasias das Glândulas Suprarrenais , Feocromocitoma , Humanos , Glândulas Suprarrenais/metabolismo , Catecolaminas/metabolismo , Cromograninas/metabolismo
2.
Clin Nucl Med ; 49(5): 419-426, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38546331

RESUMO

INTRODUCTION: 123 I-MIBG has been well established as a functional imaging tool, and 131 I-MIBG therapy is being considered for catecholamine-secreting tumors. Tumors with the characteristics of a noradrenergic biochemical phenotype, small, malignant, metastatic, extra-adrenal, bilateral, and hereditary, especially SDHx -related tumors, are reported to correlate with reduced MIBG uptake. However, the potential molecular mechanisms influencing MIBG uptake have been poorly studied. PATIENTS AND METHODS: To identify critical genes that may enhance MIBG accumulation in pheochromocytomas (PCCs), we performed RNA-seq analyses for 16 operated patients with PCCs (6 MIBG-negative and 10 MIBG-positive) combined with RT-qPCR for 27 PCCs (5 MIBG-negative and 22 MIBG-positive) and examined primary cultures of the surgical tissues. RESULTS: In the present study, 6 adrenal nodules of 66 nodules surgically removed from 63 patients with PCCs (9%) were MIBG negative. MIBG, a guanethidine analog of norepinephrine, can enter chromaffin cells through active uptake via the cellular membrane, be deposited in chromaffin granules, and be released via Ca 2+ -triggered exocytosis from adrenal chromaffin cells. When we compared expression of several catecholamine biosynthesis and secretion-associated genes between MIBG-negative and MIBG-positive tumors using transcriptome analyses, we found that neuropeptide Y, which is contained in chromaffin granules, was significantly increased in MIBG-negative tumors. NPY stimulated norepinephrine secretion dose-dependently in primary cell culture derived from MIBG-positive PCC. In our study, MIBG-negative PCCs were all norepinephrine-hypersecreting tumors. CONCLUSIONS: These data indicate that NPY upregulation in PCCs may stimulate chromaffin granule catecholamine secretion, which is associated with false-negative 123 I-MIBG scintigraphy.


Assuntos
Neoplasias das Glândulas Suprarrenais , Feocromocitoma , Humanos , Feocromocitoma/patologia , 3-Iodobenzilguanidina , Neuropeptídeo Y/metabolismo , Neoplasias das Glândulas Suprarrenais/metabolismo , Catecolaminas/metabolismo , Cintilografia , Norepinefrina/metabolismo
3.
Int J Mol Sci ; 25(5)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38473855

RESUMO

In order to determine the behavior of the right ventricle, we have reviewed the existing literature in the area of cardiac remodeling, signal transduction pathways, subcellular mechanisms, ß-adrenoreceptor-adenylyl cyclase system and myocardial catecholamine content during the development of left ventricular failure due to myocardial infarction. The right ventricle exhibited adaptive cardiac hypertrophy due to increases in different signal transduction pathways involving the activation of protein kinase C, phospholipase C and protein kinase A systems by elevated levels of vasoactive hormones such as catecholamines and angiotensin II in the circulation at early and moderate stages of heart failure. An increase in the sarcoplasmic reticulum Ca2+ transport without any changes in myofibrillar Ca2+-stimulated ATPase was observed in the right ventricle at early and moderate stages of heart failure. On the other hand, the right ventricle showed maladaptive cardiac hypertrophy at the severe stages of heart failure due to myocardial infarction. The upregulation and downregulation of ß-adrenoreceptor-mediated signal transduction pathways were observed in the right ventricle at moderate and late stages of heart failure, respectively. The catalytic activity of adenylate cyclase, as well as the regulation of this enzyme by Gs proteins, were seen to be augmented in the hypertrophied right ventricle at early, moderate and severe stages of heart failure. Furthermore, catecholamine stores and catecholamine uptake in the right ventricle were also affected as a consequence of changes in the sympathetic nervous system at different stages of heart failure. It is suggested that the hypertrophied right ventricle may serve as a compensatory mechanism to the left ventricle during the development of early and moderate stages of heart failure.


Assuntos
Insuficiência Cardíaca , Infarto do Miocárdio , Humanos , Ventrículos do Coração/metabolismo , Insuficiência Cardíaca/metabolismo , Infarto do Miocárdio/metabolismo , Cardiomegalia/metabolismo , Miocárdio/metabolismo , Receptores Adrenérgicos beta/metabolismo , Catecolaminas/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Adenilil Ciclases/metabolismo
4.
Mikrochim Acta ; 191(3): 170, 2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38427110

RESUMO

Gold nanostructures and a Nafion modified screen-printed carbon electrode (Nafion/AuNS/SPCE) were developed to assess the cell viability of Parkinson's disease (PD) cell models. The electrochemical measurement of cell viability was reflected by catecholamine neurotransmitter (represented by dopamine) secretion capacity, followed by a traditional tetrazolium-based colorimetric assay for confirmation. Due to the  capacity to synthesize, store, and release catecholamines as well as their unlimited homogeneous proliferation, and ease of manipulation, pheochromocytoma (PC12) cells were used for PD cell modeling. Commercial low-differentiated and highly-differentiated PC12 cells, and home-made nerve growth factor (NGF) induced low-differentiated PC12 cells (NGF-differentiated PC12 cells) were included in the modeling. This approach achieved sensitive and rapid determination of cellular modeling and intervention states. Notably, among the three cell lines, NGF-differentiated PC12 cells displayed the enhanced neurotransmitter secretion level accompanied with attenuated growth rate, incremental dendrites in number and length that were highly resemble with neurons. Therefore, it was selected as the PD-tailorable modeling cell line. In short, the electrochemical sensor can be used to sensitively determine the biological function of neuron-like PC12 cells with negligible destruction and to explore the protective and regenerative impact of various substances on nerve cell model.


Assuntos
Neoplasias das Glândulas Suprarrenais , Polímeros de Fluorcarboneto , Doença de Parkinson , Ratos , Animais , Catecolaminas/metabolismo , Células PC12 , Fator de Crescimento Neural , Avaliação Pré-Clínica de Medicamentos , Neurotransmissores
5.
Vitam Horm ; 124: 221-295, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38408800

RESUMO

Stress is part of our daily lives and good health in the modern world is offset by unhealthy lifestyle factors, including the deleterious consequences of stress and associated pathologies. Repeated and/or prolonged stress may disrupt the body homeostasis and thus threatens our lives. Adaptive processes that allow the organism to adapt to new environmental conditions and maintain its homeostasis are therefore crucial. The adrenal glands are major endocrine/neuroendocrine organs involved in the adaptive response of the body facing stressful situations. Upon stress episodes and in response to activation of the sympathetic nervous system, the first adrenal cells to be activated are the neuroendocrine chromaffin cells located in the medullary tissue of the adrenal gland. By releasing catecholamines (mainly epinephrine and to a lesser extent norepinephrine), adrenal chromaffin cells actively contribute to the development of adaptive mechanisms, in particular targeting the cardiovascular system and leading to appropriate adjustments of blood pressure and heart rate, as well as energy metabolism. Specifically, this chapter covers the current knowledge as to how the adrenal medullary tissue remodels in response to stress episodes, with special attention paid to chromaffin cell stimulus-secretion coupling. Adrenal stimulus-secretion coupling encompasses various elements taking place at both the molecular/cellular and tissular levels. Here, I focus on stress-driven changes in catecholamine biosynthesis, chromaffin cell excitability, synaptic neurotransmission and gap junctional communication. These signaling pathways undergo a collective and finely-tuned remodeling, contributing to appropriate catecholamine secretion and maintenance of body homeostasis in response to stress.


Assuntos
Medula Suprarrenal , Células Cromafins , Humanos , Medula Suprarrenal/metabolismo , Células Cromafins/metabolismo , Transmissão Sináptica/fisiologia , Catecolaminas/metabolismo , Junções Comunicantes/metabolismo
6.
Angew Chem Int Ed Engl ; 63(16): e202400422, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38380500

RESUMO

An overreactive stress granule (SG) pathway and long-lived, stable SGs formation are thought to participate in the progress of neurodegenerative diseases (NDs). To understand if and how SGs contribute to disorders of neurotransmitter release in NDs, we examined the interaction between extracellular isolated SGs and vesicles. Amperometry shows that the vesicular content increases and dynamics of vesicle opening slow down after vesicles are treated with SGs, suggesting larger vesicles are formed. Data from transmission electron microscopy (TEM) clearly shows that a portion of large dense-core vesicles (LDCVs) with double/multiple cores appear, thus confirming that SGs induce homotypic fusion between LDCVs. This might be a protective step to help cells to survive following high oxidative stress. A hypothetical mechanism is proposed whereby enriched mRNA or protein in the shell of SGs is likely to bind intrinsically disordered protein (IDP) regions of vesicle associated membrane protein (VAMP) driving a disrupted membrane between two closely buddled vesicles to fuse with each other to form double-core vesicles. Our results show that SGs induce homotypic fusion of LDCVs, providing better understanding of how SGs intervene in pathological processes and opening a new direction to investigations of SGs involved neurodegenerative disease.


Assuntos
Catecolaminas , Doenças Neurodegenerativas , Humanos , Catecolaminas/metabolismo , Doenças Neurodegenerativas/metabolismo , Grânulos de Estresse , Microscopia Eletrônica , Microscopia Eletrônica de Transmissão
7.
ACS Chem Neurosci ; 15(4): 816-826, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38344810

RESUMO

The two essential fatty acids, alpha-linolenic acid and linoleic acid, and the higher unsaturated fatty acids synthesized from them are critical for the development and maintenance of normal brain functions. Deficiencies of these fatty acids have been shown to cause damage to the neuronal development, cognition, and locomotor function. We combined electrochemistry and imaging techniques to examine the effects of the two essential fatty acids on catecholamine release dynamics and the vesicle content as well as on the cell membrane phospholipid composition to understand how they impact exocytosis and by extension neurotransmission at the single-cell level. Incubation of either of the two fatty acids reduces the size of secretory vesicles and enables the incorporation of more double bonds into the cell membrane structure, resulting in higher membrane flexibility. This subsequently affects proteins regulating the dynamics of the exocytotic fusion pore and thereby affects exocytosis. Our data suggest a possible pathway whereby the two essential fatty acids affect the membrane structure to impact exocytosis and provide a potential treatment for diseases and impairments related to catecholamine signaling.


Assuntos
Catecolaminas , Lipídeos de Membrana , Catecolaminas/metabolismo , Ácidos Graxos Insaturados , Ácidos Graxos Essenciais/farmacologia , Exocitose/fisiologia
8.
Int J Mol Sci ; 25(3)2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38338864

RESUMO

Orexins are neuronal peptides that play a prominent role in sleep behavior and feeding behavior in the central nervous system, though their receptors also exist in peripheral organs, including the adrenal gland. In this study, the effects of orexins on catecholamine synthesis in the rat adrenomedullary cell line PC12 were investigated by focusing on their interaction with the adrenomedullary bone morphogenetic protein (BMP)-4. Orexin A treatment reduced the mRNA levels of key enzymes for catecholamine synthesis, including tyrosine hydroxylase (Th), 3,4-dihydroxyphenylalanie decarboxylase (Ddc) and dopamine ß-hydroxylase (Dbh), in a concentration-dependent manner. On the other hand, treatment with BMP-4 suppressed the expression of Th and Ddc but enhanced that of Dbh with or without co-treatment with orexin A. Of note, orexin A augmented BMP-receptor signaling detected by the phosphorylation of Smad1/5/9 through the suppression of inhibitory Smad6/7 and the upregulation of BMP type-II receptor (BMPRII). Furthermore, treatment with BMP-4 upregulated the mRNA levels of OX1R in PC12 cells. Collectively, the results indicate that orexin and BMP-4 suppress adrenomedullary catecholamine synthesis by mutually upregulating the pathway of each other in adrenomedullary cells.


Assuntos
Proteínas Morfogenéticas Ósseas , Catecolaminas , Orexinas , Animais , Ratos , Proteínas Morfogenéticas Ósseas/metabolismo , Catecolaminas/metabolismo , Orexinas/farmacologia , Orexinas/metabolismo , RNA Mensageiro , Transdução de Sinais , Tirosina 3-Mono-Oxigenase/genética , Tirosina 3-Mono-Oxigenase/metabolismo , Células PC12/metabolismo
9.
J Appl Physiol (1985) ; 136(5): 1040-1052, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38205550

RESUMO

Findings from a recent 70-day bedrest investigation suggested intermittent exercise testing in the control group may have served as a partial countermeasure for skeletal muscle size, function, and fiber-type shifts. The purpose of the current study was to investigate the metabolic and skeletal muscle molecular responses to the testing protocols. Eight males (29 ± 2 yr) completed muscle power (6 × 4 s; peak muscle power: 1,369 ± 86 W) and V̇o2max (13 ± 1 min; 3.2 ± 0.2 L/min) tests on specially designed supine cycle ergometers during two separate trials. Blood catecholamines and lactate were measured pre-, immediately post-, and 4-h postexercise. Muscle homogenate and muscle fiber-type-specific [myosin heavy chain (MHC) I and MHC IIa] mRNA levels of exercise markers (myostatin, IκBα, myogenin, MuRF-1, ABRA, RRAD, Fn14, PDK4) and MHC I, IIa, and IIx were measured from vastus lateralis muscle biopsies obtained pre- and 4-h postexercise. The muscle power test altered (P ≤ 0.05) norepinephrine (+124%), epinephrine (+145%), lactate (+300%), and muscle homogenate mRNA (IκBα, myogenin, MuRF-1, RRAD, Fn14). The V̇o2max test altered (P ≤ 0.05) norepinephrine (+1,394%), epinephrine (+1,412%), lactate (+736%), and muscle homogenate mRNA (myostatin, IκBα, myogenin, MuRF-1, ABRA, RRAD, Fn14, PDK4). In general, both tests influenced MHC IIa muscle fibers more than MHC I with respect to the number of genes that responded and the magnitude of response. Both tests also influenced MHC mRNA expression in a muscle fiber-type-specific manner. These findings provide unique insights into the adaptive response of skeletal muscle to small doses of exercise and could help shape exercise dosing for astronauts and Earth-based individuals.NEW & NOTEWORTHY Declines in skeletal muscle health are a concern for astronauts on long-duration spaceflights. The current findings add to the growing body of exercise countermeasures data, suggesting that small doses of specific exercise can be beneficial for certain aspects of skeletal muscle health. This information can be used in conjunction with other components of existing exercise programs for astronauts and might translate to other areas focused on skeletal muscle health (e.g., sports medicine, rehabilitation, aging).


Assuntos
Exercício Físico , Músculo Esquelético , Voo Espacial , Humanos , Masculino , Voo Espacial/métodos , Adulto , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiologia , Exercício Físico/fisiologia , Cadeias Pesadas de Miosina/metabolismo , Ácido Láctico/sangue , Ácido Láctico/metabolismo , RNA Mensageiro/metabolismo , Catecolaminas/metabolismo , Catecolaminas/sangue , Teste de Esforço/métodos , Consumo de Oxigênio/fisiologia , Proteínas Musculares/metabolismo
10.
Neurotoxicol Teratol ; 101: 107317, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38199311

RESUMO

Currently, there is a gap in understanding the neurobiological impact early adolescent toluene exposure has on subsequent actions of other drugs. Adolescent (PND 28-32) male Swiss-Webster mice (N = 210) were exposed to 0, 2000, or 4000 ppm of toluene vapor for 30 min/day for 5 days. Immediately following the last toluene exposure (PND 32; n = 15) or after a short delay (PND 35; n = 15), a subset of subjects' brains was collected for monoamine analysis. Remaining mice were assigned to one of two abstinence periods: a short 4-day (PND 36) or long 12-day (PND 44) delay after toluene exposure. Mice were then subjected to a cumulative dose response assessment of either cocaine (0, 2.5, 5, 10, 20 mg/kg; n = 60), ethanol (0, 0.5, 1, 2, 4 g/kg; n = 60), or saline (5 control injections; n = 60). Toluene concentration-dependently increased locomotor activity during exposure. When later challenged, mice exposed previously to toluene were significantly less active after cocaine (10 and 20 mg/kg) compared to air-exposed controls. Animals were also less active at the highest dose of alcohol (4 g/kg) following prior exposure to 4000 ppm when compared to air-exposed controls. Analysis of monoamines and their metabolites using High Pressure Liquid Chromatography (HPLC) within the medial prefrontal cortex (mPFC), nucleus accumbens (NAc), dorsal striatum (dSTR), and ventral tegmental area (VTA) revealed subtle effects on monoamine or metabolite levels following cumulative dosing that varied by drug (cocaine and ethanol) and abstinence duration. Our results suggest that early adolescent toluene exposure produces behavioral desensitization to subsequent cocaine-induced locomotor activity with subtle enhancement of ethanol's depressive effects and less clear impacts on levels of monoamines.


Assuntos
Cocaína , Etanol , Humanos , Camundongos , Animais , Masculino , Adolescente , Etanol/farmacologia , Encéfalo , Núcleo Accumbens/metabolismo , Catecolaminas/metabolismo , Catecolaminas/farmacologia , Cocaína/farmacologia , Tolueno/toxicidade
11.
J Invertebr Pathol ; 203: 108057, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38176675

RESUMO

Nitric oxide (NO) is a simple molecule involved in many biological processes and functions in the cardiovascular, neural, and immune systems. In recent years, NO has also been recognized as a crucial messenger in communication between the nervous and immune systems. Together with NO, catecholamines are the main group of neurotransmitters involved in cross-talk between the nervous and immune systems. Catecholamines such as noradrenaline, can act on immune cells through adrenoreceptors (ARs) present on the cell surface, and NO can cross the cell membrane and interact with secondary messengers, modulating catecholamine production. Here, we analyzed the mutual modulation by noradrenaline and NO in Phallusia nigra immune cells for specific subtypes of ARs. We also investigated the involvement of protein kinases A and C as secondary messengers to these specific subtypes of ARs in the adrenergic signaling pathway that culminates in NO modulation, and the phylogenetic distribution of ARs in deuterostome genomes. This analysis provided evidence for single-copy orthologs of α1, α2 and ß-AR in ascidian genomes, suggesting that NO and NA act on a less diverse set of ARs in urochordates. Pharmacological assays showed that high levels of NO can induce ascidian immune cells to produce catecholamines. We also observed that protein kinases A and C are the secondary messengers involved in downstream modulation of NO production through an ancestral ß-AR. Taken together, these results provide new information on NO as a modulator of immune cells, and reveal the molecules involved in the signaling pathway of ARs. The results also indicate that ARs may participate in NO modulation. Finally, our results suggest that the common ancestor of urochordates possessed a less complex system of ARs required for immune action and diverse pharmacological responses, since the α-ARs are phylogenetically more related to D1-receptors than are the ß-ARs.


Assuntos
Óxido Nítrico , Urocordados , Animais , Filogenia , Catecolaminas/metabolismo , Norepinefrina , Proteínas Quinases
12.
Eur J Oral Sci ; 132(1): e12957, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37908149

RESUMO

Stress substantially increases the risk of developing painful temporomandibular disorders (TMDs) by influencing the release of endogenous catecholamines. Propranolol, an antagonist of ß-adrenergic receptors, has shown potential in alleviating TMD-associated pain, particularly when the level of catecholamines is elevated. The aim of this study was to explore whether intra-articular propranolol administration is effective in diminishing temporomandibular joint (TMJ) pain during repeated stress situations. Additionally, we investigated the effect of repeated stress on the expression of genes encoding ß-adrenoceptors in the trigeminal ganglion. In the present study, rats were exposed to a stress protocol induced by sound, then to the administration of formalin in the TMJ (to elicit a nociceptive response), followed immediately afterward by different doses of propranolol, after which the analgesic response to propranolol was evaluated. We also assessed the levels of beta-1 and beta-2 adrenergic receptor mRNAs (Adrb1 and Adrb2, respectively) using reverse transcription-quantitative PCR (RT-qPCR). Our findings revealed that propranolol administration reduces formalin-induced TMJ nociception more effectively in stressed rats than in non-stressed rats. Furthermore, repeated stress decreases the expression of the Adrb2 gene within the trigeminal ganglion. The findings of this study are noteworthy as they suggest that individuals with a chronic stress history might find potential benefits from ß-blockers in TMD treatment.


Assuntos
Propranolol , Articulação Temporomandibular , Ratos , Animais , Propranolol/efeitos adversos , Articulação Temporomandibular/metabolismo , Ratos Wistar , Dor , Catecolaminas/metabolismo , Catecolaminas/farmacologia , Catecolaminas/uso terapêutico , Formaldeído/efeitos adversos , Formaldeído/metabolismo
13.
Endocr J ; 71(1): 65-74, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-37952980

RESUMO

Pheochromocytomas and paragangliomas (PPGLs) are rare tumors that secrete catecholamines and arise from the adrenal medulla or extra-adrenal sympathetic ganglia. These tumors secrete adrenaline and noradrenaline, but paragangliomas usually produce only noradrenaline because of the lack of phenylethanolamine N-methyltransferase (PNMT) expression. Composite paragangliomas, which are complex tumors consisting of multiple types of neuroblastic cells, are extremely rare. We present the case of a 46-year-old woman with an atypical catecholamine profile who was preoperatively diagnosed with pheochromocytoma. However, postoperative pathology revealed that the patient had an extra-adrenal paraganglioma accompanied by a ganglioneuroma, which led to the diagnosis of a composite tumor. Interestingly, PNMT is expressed in both paragangliomas and ganglioneuromas. In addition, we reviewed reported composite paragangliomas and compared their clinical features with those of composite pheochromocytomas. We also discuss various aspects of the etiology of composite paragangliomas and the mechanism by which PNMT is expressed in tumors.


Assuntos
Neoplasias das Glândulas Suprarrenais , Ganglioneuroma , Paraganglioma , Feocromocitoma , Feminino , Humanos , Pessoa de Meia-Idade , Catecolaminas/metabolismo , Feocromocitoma/diagnóstico , Feocromocitoma/cirurgia , Feocromocitoma/patologia , Ganglioneuroma/diagnóstico , Ganglioneuroma/cirurgia , Feniletanolamina N-Metiltransferase , Paraganglioma/diagnóstico , Paraganglioma/cirurgia , Neoplasias das Glândulas Suprarrenais/diagnóstico , Neoplasias das Glândulas Suprarrenais/cirurgia , Neoplasias das Glândulas Suprarrenais/patologia , Norepinefrina
14.
Glia ; 72(1): 90-110, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37632136

RESUMO

Brain-derived neurotrophic factor (BDNF) plays a fundamental role in the developing and adult nervous system, contributing to neuronal survival, differentiation, and synaptic plasticity. Dysregulation of BDNF synthesis, secretion or signaling has been associated with many neurodevelopmental, neuropsychiatric, and neurodegenerative disorders. Although the transcriptional regulation of the Bdnf gene has been extensively studied in neurons, less is known about the regulation and function of BDNF in non-neuronal cells. The most abundant type of non-neuronal cells in the brain, astrocytes, express BDNF in response to catecholamines. However, genetic elements responsible for this regulation have not been identified. Here, we investigated four potential Bdnf enhancer regions and based on reporter gene assays, CRISPR/Cas9 engineering and CAPTURE-3C-sequencing we conclude that a region 840 kb upstream of the Bdnf gene regulates catecholamine-dependent expression of Bdnf in rodent astrocytes. We also provide evidence that this regulation is mediated by CREB and AP1 family transcription factors. This is the first report of an enhancer coordinating the transcription of Bdnf gene in non-neuronal cells.


Assuntos
Astrócitos , Fator Neurotrófico Derivado do Encéfalo , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Astrócitos/metabolismo , Catecolaminas/metabolismo , Fatores de Transcrição/metabolismo , Neurônios/metabolismo , Roedores/metabolismo
15.
Front Immunol ; 14: 1306467, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38111579

RESUMO

Conventional models view ß1-adrenergic receptors (ß1ARs) as full-length proteins that activate signaling pathways that influence contractile function and ventricular remodeling - and are susceptible to agonist-dependent desensitization. This perspective summarizes recent studies from my laboratory showing that post-translational processing of the ß1-adrenergic receptor N-terminus results in the accumulation of both full-length and N-terminally truncated forms of the ß1AR that differ in their signaling properties. We also implicate oxidative stress and ß1AR cleavage by elastase as two novel mechanisms that would (in the setting of cardiac injury or inflammation) lead to altered or decreased ß1AR responsiveness.


Assuntos
Catecolaminas , Miócitos Cardíacos , Miócitos Cardíacos/metabolismo , Catecolaminas/metabolismo , Transdução de Sinais , Oxirredução , Receptores Adrenérgicos/metabolismo
16.
Endocrinology ; 165(1)2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37972266

RESUMO

BACKGROUND: Catecholamine-stimulated lipolysis is reduced with aging, which may promote adiposity and insulin resistance. Organic cation transporter 3 (OCT3), which is inhibited by estradiol (E2), mediates catecholamine transport into adipocytes for degradation, thus decreasing lipolysis. In this study, we investigated the association of OCT3 mRNA levels in subcutaneous adipose tissue (SAT) with aging and markers of insulin resistance in women. METHODS: SAT biopsies were obtained from 66 women with (19) or without (47) type 2 diabetes (age 22-76 years, 20.0-40.1 kg/m2). OCT3 mRNA and protein levels were measured for group comparisons and correlation analysis. SAT was incubated with E2 and OCT3 mRNA levels were measured. Associations between OCT3 single nucleotide polymorphisms (SNPs) and diabetes-associated traits were assessed. RESULTS: OCT3 mRNA and protein levels in SAT increased with aging. SAT from postmenopausal women had higher levels of OCT3 than premenopausal women, and there was a dose-dependent reduction in OCT3 mRNA levels in SAT treated with E2. OCT3 mRNA levels were negatively associated with markers of insulin resistance, and ex vivo lipolysis. OCT3 SNPs were associated with BMI, waist to hip ratio, and circulating lipids (eg, triglycerides). CONCLUSION: OCT3 mRNA and protein levels in SAT increased with aging, and mRNA levels were negatively associated with markers of insulin resistance. E2 incubation downregulated OCT3 mRNA levels, which may explain lower OCT3 mRNA in premenopausal vs postmenopausal women. High OCT3 protein levels in adipose tissue may result in increased catecholamine degradation, and this can contribute to the reduction in lipolysis observed in women with aging.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Adulto , Idoso , Feminino , Humanos , Pessoa de Meia-Idade , Adulto Jovem , Tecido Adiposo/metabolismo , Envelhecimento , Catecolaminas/farmacologia , Catecolaminas/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Lipídeos , RNA Mensageiro/metabolismo , Gordura Subcutânea/metabolismo
17.
Nature ; 624(7992): 672-681, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37935376

RESUMO

Trace-amine-associated receptors (TAARs), a group of biogenic amine receptors, have essential roles in neurological and metabolic homeostasis1. They recognize diverse endogenous trace amines and subsequently activate a range of G-protein-subtype signalling pathways2,3. Notably, TAAR1 has emerged as a promising therapeutic target for treating psychiatric disorders4,5. However, the molecular mechanisms underlying its ability to recognize different ligands remain largely unclear. Here we present nine cryo-electron microscopy structures, with eight showing human and mouse TAAR1 in a complex with an array of ligands, including the endogenous 3-iodothyronamine, two antipsychotic agents, the psychoactive drug amphetamine and two identified catecholamine agonists, and one showing 5-HT1AR in a complex with an antipsychotic agent. These structures reveal a rigid consensus binding motif in TAAR1 that binds to endogenous trace amine stimuli and two extended binding pockets that accommodate diverse chemotypes. Combined with mutational analysis, functional assays and molecular dynamic simulations, we elucidate the structural basis of drug polypharmacology and identify the species-specific differences between human and mouse TAAR1. Our study provides insights into the mechanism of ligand recognition and G-protein selectivity by TAAR1, which may help in the discovery of ligands or therapeutic strategies for neurological and metabolic disorders.


Assuntos
Proteínas de Ligação ao GTP , Receptores Acoplados a Proteínas G , Animais , Humanos , Camundongos , Aminas/metabolismo , Anfetamina/metabolismo , Antipsicóticos/química , Antipsicóticos/metabolismo , Sítios de Ligação , Catecolaminas/agonistas , Catecolaminas/química , Catecolaminas/metabolismo , Microscopia Crioeletrônica , Proteínas de Ligação ao GTP/química , Proteínas de Ligação ao GTP/metabolismo , Proteínas de Ligação ao GTP/ultraestrutura , Ligantes , Simulação de Dinâmica Molecular , Mutação , Polifarmacologia , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/ultraestrutura , Especificidade da Espécie , Especificidade por Substrato
18.
Cell Mol Life Sci ; 80(11): 323, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37819449

RESUMO

BACKGROUND: The functional contribution of non-myocyte cardiac cells, such as inflammatory cells, in the setup of heart failure in response to doxorubicin (Dox) is recently becoming of growing interest. OBJECTIVES: The study aims to evaluate the role of macrophages in cardiac damage elicited by Dox treatment. METHODS: C57BL/6 mice were treated with one intraperitoneal injection of Dox (20 mg/kg) and followed up for 5 days by cardiac ultrasounds (CUS), histological, and flow cytometry evaluations. We also tested the impact of Dox in macrophage-depleted mice. Rat cardiomyoblasts were directly treated with Dox (D-Dox) or with a conditioned medium from cultured murine macrophages treated with Dox (M-Dox). RESULTS: In response to Dox, macrophage infiltration preceded cardiac damage. Macrophage depletion prevents Dox-induced damage, suggesting a key role of these cells in promoting cardiotoxicity. To evaluate the crosstalk between macrophages and cardiac cells in response to DOX, we compared the effects of D-Dox and M-Dox in vitro. Cell vitality was lower in cardiomyoblasts and apoptosis was higher in response to M-Dox compared with D-Dox. These events were linked to p53-induced mitochondria morphology, function, and autophagy alterations. We identify a mechanistic role of catecholamines released by Dox-activated macrophages that lead to mitochondrial apoptosis of cardiac cells through ß-AR stimulation. CONCLUSIONS: Our data indicate that crosstalk between macrophages and cardiac cells participates in cardiac damage in response to Dox.


Assuntos
Catecolaminas , Doxorrubicina , Ratos , Camundongos , Animais , Catecolaminas/metabolismo , Camundongos Endogâmicos C57BL , Doxorrubicina/efeitos adversos , Apoptose , Miócitos Cardíacos/metabolismo , Macrófagos , Estresse Oxidativo
19.
Neurobiol Learn Mem ; 205: 107828, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37730100

RESUMO

The participation of the hippocampal formation in consolidation and reconsolidation of contextual fear memories has been widely recognized and known to be dependent on the activation of the cAMP response element (CRE) binding protein (CREB) pathway. Recent findings have challenged the prevailing view that over time contextual fear memories migrate to neocortical circuits and no longer require the hippocampus for retrieval of remote fearful memories. It has also recently been found that this brain structure is important for the maintenance and recall of remote fear memories associated with aversive events, a common trait in stress-related disorders such as generalized anxiety disorder (GAD), major depression, and post-traumatic stress disorder. In view of these findings, here we examined the putative role of CREB in the hippocampus of an animal model of GAD during the retrieval of remote contextual fear memories. Specifically, we evaluated CREB phosphorylation in the hippocampus of male Carioca High- and Low-conditioned Freezing rats (CHF and CLF, respectively) upon re-exposure of animals to contextual cues associated to footshocks weeks after fear conditioning. Age-matched male rats from a randomized crossbreeding population served as controls (CTL). Adrenal catecholamine levels were also measured as a biological marker of stress response. Seven weeks after contextual fear conditioning, half of the sample of CHF (n = 9), CLF (n = 10) and CTL (n = 10) rats were randomly assigned to return to the same context chamber where footshocks were previously administrated (Context condition), while the remaining animals were individually placed in standard housing cages (Control condition). Western blot results indicated that pCREB levels were significantly increased in the hippocampus of CHF rats for both Context and Control conditions when compared to the other experimental groups. CHF rats in the Context condition also exhibited significant more freezing than that observed for both CLF and CTL rats. Lastly, CHF animals in the Context condition displayed significantly higher adrenal catecholamine levels than those in the Control condition, whereas no differences in catecholamine levels were observed between Context and Control conditions for CLF and CTL rats. These findings are discussed from a perspective in which the hippocampus plays a role in the maintenance and recall of remote contextual fear memories via the CREB pathway.


Assuntos
Encéfalo , Medo , Ratos , Masculino , Animais , Fosforilação , Medo/fisiologia , Encéfalo/metabolismo , Hipocampo/fisiologia , Catecolaminas/metabolismo
20.
Nature ; 622(7982): 383-392, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37731001

RESUMO

CD8+ T cells are essential components of the immune response against viral infections and tumours, and are capable of eliminating infected and cancerous cells. However, when the antigen cannot be cleared, T cells enter a state known as exhaustion1. Although it is clear that chronic antigen contributes to CD8+ T cell exhaustion, less is known about how stress responses in tissues regulate T cell function. Here we show a new link between the stress-associated catecholamines and the progression of T cell exhaustion through the ß1-adrenergic receptor ADRB1. We identify that exhausted CD8+ T cells increase ADRB1 expression and that exposure of ADRB1+ T cells to catecholamines suppresses their cytokine production and proliferation. Exhausted CD8+ T cells cluster around sympathetic nerves in an ADRB1-dependent manner. Ablation of ß1-adrenergic signalling limits the progression of T cells towards the exhausted state in chronic infection and improves effector functions when combined with immune checkpoint blockade (ICB) in melanoma. In a pancreatic cancer model resistant to ICB, ß-blockers and ICB synergize to boost CD8+ T cell responses and induce the development of tissue-resident memory-like T cells. Malignant disease is associated with increased catecholamine levels in patients2,3, and our results establish a connection between the sympathetic stress response, tissue innervation and T cell exhaustion. Here, we uncover a new mechanism by which blocking ß-adrenergic signalling in CD8+ T cells rejuvenates anti-tumour functions.


Assuntos
Linfócitos T CD8-Positivos , Catecolaminas , Receptores Adrenérgicos beta 1 , Sistema Nervoso Simpático , Exaustão das Células T , Humanos , Antígenos/imunologia , Antígenos/metabolismo , Catecolaminas/metabolismo , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Proliferação de Células , Inibidores de Checkpoint Imunológico/uso terapêutico , Melanoma/imunologia , Melanoma/metabolismo , Melanoma/terapia , Células T de Memória/citologia , Células T de Memória/imunologia , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/terapia , Receptores Adrenérgicos beta 1/metabolismo , Sistema Nervoso Simpático/imunologia , Sistema Nervoso Simpático/fisiologia , Estresse Fisiológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...